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Анотацiї

Картишев Єгор Сергiйович. Схема Акла-Тейлора i аналiз її

безпеки.

У цiй роботi ми розглянемо схему Акла-Тейлора призначення ключiв,

зрозумiємо, як вона влаштована i якi iснують рiзновиди її реалiзацiї. Схеми

призначення ключiв полегшують розподiл ключiв користувачам, дозволя-

ючи їм розшифровувати та отримувати доступ до певної iнформацiї. Як

правило, користувачi органiзованi в iєрархiчну структуру вiдповiдно до

своїх повноважень, що дозволяє користувачевi з вищими повноваженнями

отримувати ключi вiд усiх пiдлеглих користувачiв з нижчими повноважен-

нями. Ми обговоримо основнi атаки на системи, що використовує цю схему

i захищенiсть нашої системи стосовно цих атак.

Ключовi слова: iєрархiчне призначення ключа, алгоритм RSA, незна-

чна функцiя.
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Annotation

Kartyshev Yehor. Akl-Taylor scheme and its security analysis.

In this paper we will consider the Akla-Taylor scheme for key assignment,

understand how it is structured and what types of its implementation exist.

Key assignment schemes facilitate the distribution of keys to users, allowing

them to decrypt and access specific information. Typically, users are orga-

nized into a hierarchical structure according to their authority, enabling a

user with higher authority to derive the keys of all subordinate users with

lower authority. We will discuss the main attacks on systems using this

scheme and the security of our system against these attacks.

Keywords: hierarchical key assignment, RSA algorithm, negligible func-

tion.
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1.Introduction

In various applications where users and resources can be organized into

partially ordered hierarchies, hierarchical key assignment schemes are ex-

tensively employed to establish secure access control policies. The natural

organization provided by hierarchies, reflecting users’ roles within an organi-

zation, makes them a fundamental component across diverse domains (e.g.,

database management systems, computer networks, operating systems, mili-

tary, government communications). Hierarchies play a crucial role in scenar-

ios modeled using Role Based Access Control (RBAC).

In 1983, Akl and Taylor introduced a novel perspective by proposing the

integration of cryptographic techniques to fortify access control mechanisms

within hierarchical structures [5] . Their innovative approach materialized in

a hierarchical key assignment scheme, where each class received a dedicated

encryption key. This key, coupled with specific public parameters, empowered

the calculation of keys assigned to all subordinate classes in the hierarchy.

The Akl–Taylor scheme, celebrated for its simplicity and versatility, has

seen widespread adoption in enforcing access control across diverse do-

mains. Its application extends to varied contexts, including mobile agent

environments and XML documents. Beyond its direct implementation, the

Akl–Taylor scheme has proven instrumental as a foundational template for

conceiving key assignment schemes tailored to enforce more expansive ac-

cess control policies. These encompass scenarios featuring transitive and

anti-symmetrical exceptions, as well as those grappling with time-dependent

constraints.

Furthermore, the impact of the Akl–Taylor scheme transcends specific ap-
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plications, as evidenced by its incorporation into the design of broadcast

encryption protocols. Noteworthy contributions by Asano and Attrapadung

and Kobara underscore the scheme’s adaptability and utility within the dy-

namic landscape of cryptographic endeavors [6] .



2.Our goals

Within the scope of this thesis, we conduct a thorough examination of the

Akl–Taylor scheme and its variations, focusing on both security and efficiency

aspects.

In terms of security, we delve into the Akl–Taylor scheme, aligning our

analysis with the definitions in. Special attention is given to the careful se-

lection of public parameters to ensure the scheme’s instances remain secure

against key recovery under the RSA assumption. Notably, we explore the im-

pact of hierarchy size on key derivation complexity in the Akl–Taylor scheme.

To address this, MacKinnon et al. propose an alternative generation of public

values, while Harn and Lin introduce a variant designed for more efficient key

derivation in broader and shallower hierarchies. Our investigation confirms

the security of both the MacKinnon et al. and Harn–Lin variants against

key recovery. Extending our analysis, we examine the security of the reduced

Akl–Taylor assignment, providing formal proofs for its application in schemes

covering diverse access control policies.

Moreover, we tackle the issue of designing an Akl–Taylor-based scheme

that ensures security concerning key indistinguishability. Proposing a gen-

eral construction, we introduce an independent solution that yields a key

assignment scheme offering security with respect to key indistinguishability,

leveraging any key assignment scheme guaranteeing security against key re-

covery.

Efficiency Considerations: Turning our attention to efficiency considera-

tions, we demonstrate the continued security of the Akl–Taylor scheme, even

when disclosing only a fraction of the public information — as minimal as

7
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a single prime number. However, this heightened security comes at the cost

of a more resource-intensive key derivation process. Thus, we bring to light

a tradeoff between the size of public information and the complexity of key

derivation.

Furthermore, we emphasize the superior performance of Akl–Taylor-based

schemes compared to other existing provably-secure schemes. Particu-

larly noteworthy is their efficiency in areas beyond key derivation complex-

ity. Akl–Taylor-based schemes with time constraints demand minimal pub-

lic information, showcasing heightened efficiency compared to other time-

dependent, provably-secure schemes.



3.Describing of the model

Contemplating a group of users organized into distinct classes, termed se-

curity classes, is fundamental in delineating the structure of an organization’s

access control system. Each security class serves as a representation for an

individual, a department, or a specific user group within the organizational

framework.

To establish the hierarchical structure among these classes, a binary rela-

tion denoted as ⪯ is introduced. This relation serves to partially order the

set of classes V based on the inherent authority, position, or power associ-

ated with each class within the organizational context. The relationship ⪯

provides a systematic means of representing the relative influence or ranking

of different classes within the defined hierarchy.

The structure (V,⪯), referred to as a partially ordered hierarchy or poset,

delineates the hierarchical relationships among the classes. In this hierarchy,

the notation v ⪯ u signifies that users in class u have access to the data of

class v. It’s evident that u can access its own data, leading to the assertion

that u ⪯ u for any u in V .

To formalize the access relationships we consider the following definitions

proposed in [4] :

Definition 1. Let Au be the set of nodes to which node u has access,

denoted as Au = {v ∈ V : v ⪯ u}, for any u in V .

This set captures the nodes accessible from a given node u within the

partially ordered hierarchy. Let’s

Definition 2. Let Fu = {v ∈ V : v /∈ Au}
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The hierarchy (V,⪯) finds representation in the directed graph G∗ =

(V,E∗), where each class corresponds to a vertex, and there exists an edge

from class u to class v if and only if v ⪯ u. Introducing another graph, G =

(V,E), as the minimal representation of G∗, involves constructing a directed

acyclic graph. This minimal representation is derived from the transitive

and reflexive reduction of G∗, preserving the transitive and reflexive closure.

In simpler terms, G shares the same transitive and reflexive closure as G∗,

meaning there is a path from u to v in G if and only if there is an edge

(u, v) in E∗. This minimal representation ensures a concise depiction of the

relationships while eliminating redundancy.

Definition 3. Let’s define an algorithm Gen. It will generate information

and it is probabilistic polynomial time. Gen has as input: private information

1τ and graph G = (V,E). Output will consists of: su - private information,

ku - private key ∀u ∈ V , pub - public information.

In other words we have: Gen(1τ , G) = (s, k, pub) , where s, k are corre-

sponding sequences.

Definition 4. Let’s define an algorithm Der and it is deterministic

polynomial-time. Der has as input: private information 1τ and graph G =

(V,E), class u ∈ V , v ∈ Au, su - private information that linked with class u,

pub - public information that generates by Gen. This algorithm will output

the key kv that linked with class v

In other words we have: Der(1τ , G, u, v, su, pub) = kv

Definition 5. The system (Gen,Der) we will call a hierarchical key as-

signment

Let’s define a static adversary which is attacking the class v ∈ V and let’s

assume that our static adversary is able to collect the information from any
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class u that has no access to class v. Let’s define an algorithm that will

collect this information:

Definition 6. Corruptv is an algorithm with an input that consists of

private information s that is generated by Gen, the collection of su, where

u ∈ Fv. Let’s denote the input of this algorithm by corrv

Later in this text we will use the definition of negligible function:

Definition 7. The function f : N → R is called negligible if ∀ constant

c > 0 ∃ an integer n : f(x) < x−c for all x > n

Let’s define a static adversary attack Rec− St:

Definition 8. (Rec-St) Assume G = (V,E) - graph, (Gen,Der) - hierar-

chical key assignment scheme, let StatRec
v - static adversary that attacks class

v. Let’s define such an experiment:

Experiment:

ExpRec
Statv

(1τ , G)

(s, k, pub)← Gen(1τ , G)

corrv ← Corruptv(s)

k∗v ← StatRec
v (1τ , G, pub, corrv)

return k∗v

Let’s define an advantage of StatRec
v as AdvRec

Statv
(1τ , G) = Pr[k∗v = kv].

Definition 9. We said the the scheme is secure in the sense of Rec − St

if ∀ graph G = (V,E) , v ∈ V , the function AdvRec
Statv

(1τ , G) is negligible for ∀

static adversary with polynomial time complexity in τ - StatRec
v

Let’s define a static adversary attack Ind− St:

Definition 10. Assume G = (V,E) - graph, (Gen,Der) - hierarchical key

assignment scheme, let StatIndv - static adversary that attacks class v. Let’s



12

define two experiments:

Experiment:

ExpInd−1Statv
(1τ , G)

(s, k, pub)← Gen(1τ , G)

corrv ← Corruptv(s)

d← StatIndv (1τ , G, pub, corrv, kv)

return d

Experiment:

ExpInd−0Statv
(1τ , G)

(s, k, pub)← Gen(1τ , G)

corrv ← Corruptv(s)

ρ← (0, 1)length(kv)

d← StatIndv (1τ , G, pub, corrv, ρ)

return d

Similarly with Rec − St we should define an advantage of StatIndv and

define the security of the system in sense of Ind− St:

Definition 11. Advantage of StatIndv :AdvIndStatv
(1τ , G) =

|Pr{ExpInd−1Statv
(1τ , G) = 1} − Pr{ExpInd−0Statv

(1τ , G)) = 1}|

We said the the scheme is secure in the sense of Ind − St if ∀ graph G =

(V,E) , v ∈ V , the function AdvIndStatv
(1τ , G) is negligible for ∀ static adversary

with polynomial time complexity in τ - StatIndv

Later in the text we will use generators that based on RSA. Let’s define

these generators:

Definition 12. Kran
RSA(1

τ)

Choose randomly two distinct prime numbers p, q with the size of τ bits
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n← p ∗ q

ϕ(n)← (p− 1)(q − 1)

choose e from Z∗ϕ(n)
d← e−1 mod ϕ(n)

return ((n, e), (n, p, q, d))

Definition 13. Kfix
RSA(1

τ , e)

We repeat this:

Choose randomly two distinct prime numbers p, q with the size of τ bits

until gcd(p− 1, e) = gcd(q − 1, e) = 1

n← p ∗ q

ϕ(n)← (p− 1)(q − 1)

choose e from Z∗ϕ(n)
d← e−1 mod ϕ(n)

return ((n, e), (n, p, q, d))

Now we should formulate an experiment, let’s call the generator H, where

H is Kfix
RSA(1

τ , e) or Kran
RSA(1

τ)

Definition 14. ExpHB

((n, e), (n, p, q, d))← H

x← Z∗⋉
y ← xe mod n

x′ ← B(n, e, y)

if x′ = x:

return 1

else

return 0

With an advantage AdvHB = Pr{ExpHB = 1}

Now let’s formulate two statements [2, 4]:
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Theorem 1. (Random Exponent RSA Assumption)

Advantage Adv
Kran

Rsa

B ((1τ)) is negligible, for ∀ probabilistic method B with time

polynomial complexity in τ

So the probability Pr{Exp
Kran

Rsa

B = 1} is a negligible regardless of which

algorithm B we will choose. We’ll need this fact later when we’ll talk about

the security of the scheme.

Theorem 2. (Fixed Exponent RSA Assumption)

Assume we have a set of odd numbers O, ∀e ∈ O advantage Adv
Kfix

Rsa

B ((1τ)) is

negligible then for ∀ probabilistic method B with time polynomial complexity

in τ

This fact is similar to the previous fact with the only difference that it is

formulated for the fixed encryption exponent e.



4.The Akl-Taylor scheme

Now we are able to define the Akl-Taylor scheme [5]. At first we should

define the hierarchical key assignment for this scheme. Let’s define algorithm

Gen(1τ , G):

(1) Let’s choose two different prime numbers: p,q, such that p ̸= q , p and q

have τ bit size.

(2) ∀v ∈ V define tv such that tu divides tv ⇔ v ∈ Au

(3) Define pub as sequence of the information that we defined in the previous

step.

(4) Let’s choose random k0 - secret value, such that 1 < k0 < n

(5) Let’s choose the private information sv and the encryption key kv: sv =

kv = ktv0 mod n

(6) Define s and k as private information that we define in the previous step

(7) Output (s, k, pub)

Let’s define algorithm Der(1τ , G, u, v, su, pub): From pub we have tv,tu

Let’s compute stv/tuu mod n = (kt00 )
tv/tu mod n = kv

We defined the hierarchical key assignment, but we should decide how to

apply the (2) item from the list. There are two options:

Definition 15. (The Akl–Taylor assignment) ∀v ∈ V are choosing differ-

ent pv and define tv:

tv = 1 if Av = V and tv =
∏
u/∈Av

pu otherwise.

Definition 16. (The MacKinnon assignment) Let’s divide graph G into

chains with total order and compare to each chain a prime number so all the

primes are different. For all v ∈ V compare nv = pi where i is the order of v

15
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in the relevant chain that assign to p. For ∀ v ∈ V define tv:

tv = 1 if V = Av and tv = lcmu/∈Av
nu otherwise

After we describe the second part of Gen we should describe how we will

choose our primes. There are two options:

Fixed prime choice:

Let’s define the set of l distinct prime numbers that > 2 : Pl = (p1, p2, ..., pl)

(1) In the Akl-Taylor assignment let’s sort V : {u1, u2, ..., u|V |}. Let’s compare

for ∀ui ∈ V the prime number pi ∈ P|V |

(2) In the MacKinnon et al. assignment let’s consider the minimal dividing

of G to the total ordered chains. Assume that the amount of chains is m.

Let’s compare for ∀pi ∈ Pm class ui, where ui is the first item in the i-th

chain

R-Random prime choice:

Assume n = RSA module, R = {Rn}n - family of sets of integer. (1) In the

Akl-Taylor scheme we compare for ∀ class from V a prime number from Rn.

(2)In the MacKinnon et al. assignment we compare for ∀ chain in the mini-

mal dividing of the graph G a prime number from Rn



5.The security of Akl-Taylor scheme

Now we are able to deal with security of the Akl-Taylor scheme. First of

all let’s talk about the Akl-Taylor assignment of this scheme [2,4].

Theorem 3. Assume G = (V,E) - the partially ordered hierarchy, The

scheme of the Akl-Taylor assignment with the fixed prime choice is secure to

Rec− St.

Proof

Assume that there is a static adversary Statui
that can find out kui

that

assign to the class ui with non-negligible advantage. Let’s construct a poly-

nomial time algorithm B(n, e, y), where e is choose from P|V | and e = pi, n is

generated byKfix
RSA(1

τ , G). Let’s describe how we will construct the algorithm

B(n, e, y):

Now we should construct the input for B(n, e, y): compare pj to class uj,

given what we knows that pi = e. Then, as we write before, tuj
=

∏
l /∈Auj

pl,

and if Auj
= V then tuj

= 1. The public information that we got from the

last step we combine to the sequence pub, augmented by the inclusion of the

value n. Let’s compute key kv = ytv/pi mod n for ∀v ∈ Fui
. We can do

this, because ui /∈ Auj
so pi|tv. The sequence of kv that we computed yield a

sequence of corrui
.

Then after we define the input, let’s denote kui
= Statui

(1τ , G, pub, corrui
).

Let’s pick such integer numbers α, β that α ∗ pi + β ∗ tui
= 1. There are such

numbers, because gcd(pi, tui
) = 1, so we can find α, β by using Extended

Euclidean Algorithm. Now we can compute x just by computing yα∗kβui
mod

17
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n. We will get x, because yα ∗ kβui
mod n = xα∗pi ∗ xβ∗tui mod n = xα∗pi+β∗tui

mod n = x.

Now it’s just left to consume that AdvKRSA
B (1τ , e) = AdvStatui(1τ ) and as

we said before AdvKRSA
B is negligible, so AdvStatui(1τ ) is negligible, but we

assumed that AdvStatui(1
τ) is non-negligible. We got a contradiction.

So we have proved that the Akl-Taylor assignment with the fixed prime

choice is secure to Rec− St. Now let’s prove that the scheme with the same

hierarchical key assignment with the random prime choice is secure in the

sense of Rec− St.

Theorem 4. The scheme with the Akl-Taylor assignment with the random

prime choice is secure to Rec− St.

Proof

For this theorem we will need two lemmas. Let’s formulate the first of

them:

Lemma 1. Let p, q are two distinct prime numbers with the bit size τ ,

n = p ∗ q. So the Euler function satisfies the following inequality:

ϕ(n) > 22τ−2 − 2τ

Proof

Our prime numbers p, q have bit length τ , so p, q > 2τ−1 thus,

ϕ(n) = (p−1)∗ (q−1) > (2τ−1−1)∗2τ−1, because p, q are distinct. Thus,

ϕ(n) > 22τ−2 − 2τ−1 = 22τ−2 − 2τ

For the next lemma we will need some knowledge from number theory.

First of all let’s recall the Prime Number Theorem:

Theorem 5. Let π(x) - number of prime numbers that ≤ x. Then π(x) ∼

x/ ln(x) and ∀x > 17 : π(x) > x/ ln(x).
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Next fact:

Theorem 6. Let ω(x) be the number of different prime factors of x. Then

the function ω(x) has normal order log(log x). Besides, the function ω(ϕ(n))

has normal order (log(log n))2/2 and the following inequality holds:

(1− ϵ) ∗ (log(log n))2/2 < ω(ϕ(n)) < (1 + ϵ) ∗ (log(log n))2/2.

Now we are able to formulate the lemma:

Lemma 2. Let Aw = {a < w : a is prime}, Bw = {a < w : a is prime and

gcd(a, ϕ(n)) = 1}. Let w = 22τ−2 − 2τ and n’s bitlength ≤ 2τ . Then |Aw −

Bw|/|Aw| - negligible function in τ .

Proof

First of all let’s note that |Aw| = π(w) and |Aw| − |Bw| ≤ ω(ϕ(n)):

|Aw| − |Bw|
|Aw|

≤ ω(ϕ(n))

π(w)
< (1 + ϵ) ∗ (log(log n))

2

2
∗ lnw

w

Notice that log(log n) < log(2τ) , because n < 22τ , then log(n) < 2τ , then

log log(n) < log(2τ). Notice that w > 22τ−3 and
lnw

2
< τ . Then,

|Aw| − |Bw|/|Aw| < (1 + ϵ) ∗ (log(2τ))
2 ∗ τ

22τ−3
- negligible.

Now we are able to prove the theorem: As in the previous proof of the

security we will assume that there is a static adversary B which is able to

compute with non-negligible advantage the key ku. We will construct an

algorithm B(n, e, y), where n, e are chosen from the generator Kran
RSA(1

τ):

We got e from Kran
RSA(1

τ) and if e is not prime and not satisfy an inequality

3 < e < ω - stop and try to choose e again. So if e is prime let’s set our pu =

e and choose a distinct pv for every v ∈ V, v ̸= u that is prime that ̸= e,∈

[3, w]. Then we compute tv =
∏
a/∈Av

pa, but if tv = 1 if Av = V . Unite these
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numbers into the sequence pub, along with n. Now ∀v ∈ Fu let’s compute

the key kv = ytv/pu mod n, unite these keys into the sequence corru. Denote

ku = Statu(1
τ , G, pub, corru).

Again we need to use the Extended Euclidean Algorithm to compute α, β

such that pu ∗ α+ tu ∗ β = 1, because as in the previous proof: gcd(pu, tu) =

1. It’s just left to compute: yα ∗ kβu mod n = xpu∗α ∗ xtu∗β mod n = x.

Now we got that AdvStatu(1
τ) is non-negligible. Let’s denote AdvStat′u(1

τ)

be the advantage with restriction that gcd(pu, ϕ(n)) = 1. If AdvStat′u(1
τ) is

negligible, then Statu is breaking our scheme if only gcd(pu, ϕ(n)) ̸= 1, but

accordingly the Lemma 2, the probability that gcd(pu, ϕ(n)) ̸= 1 is negligible,

then AdvStatu - negligible, then we got a contradiction. So, we got that

AdvStat′u(1
τ) is non-negligible.

Let’s note that:

Adv
Kran

RSA

B (1τ) = Probability(e is prime and gcd(e, ϕ(n)) = 1)∗ AdvStat′u(1
τ) =

=
π(w)− ω(ϕ(n))

ϕ(ϕ(n))
∗ AdvStat′u(1

τ) ≥
w
lnw − ω(ϕ(n))

ϕ(n)
∗ AdvStat′u(1

τ) ≥

≥ w − lnw ∗ ω(ϕ(n))
lnw ∗ ϕ(ϕ(n))

∗ AdvStat′u(1
τ) ≥ 22τ−2 − 2τ − 2τ ∗ ω(ϕ(n))

2τ ∗ 22τ
∗

AdvStat′u(1
τ) ≥

≥ 22τ−2 − 2τ − τ ∗ (1 + ϵ) ∗ (log log n)2

2τ ∗ 22τ
∗ AdvStat′u(1

τ) ≥

≥ 22τ−2 − 2τ −O(τ 3)

2τ ∗ 22τ
∗ AdvStat′u(1

τ) ≥ 1

c ∗ τ
∗ AdvStat′u(1

τ)

This function is non-negligible thus, Adv
Kran

RSA

B (1τ) is non-negligible. We got a

contradiction.

Theorem 7. Let G = (V,E) - partially ordered hierarchy, let m be a
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number of total ordered chains in the minimal dividing of G.The scheme

with the MacKinnon et al.assignment with prime choice in Pm is secure to

Rec = St.

Proof

Let e = pi. As usual let’s assume that there is a static adversary Statu that

is able to compute with non-negligible advantage the key ku that is compared

with the class u, where u is the l-th node in the i-th chain. As before we

will construct an algorithm B(n, e, y) where n is choosing accordingly to the

generator Kfix
RSA and with B(n, e, y) we will compute x ∈ Z∗n, such that y =

xe mod n. Let’s construct this algorithm B:

At first we will define an output: ∀ integer j ∈ [1,m] we will compare pj

to class uj with respect to pi = e. Then ∀v ∈ V we will compute nv = plj,

where v - lth node in the j-th chain. Now we can compute tv = lcma/∈Av
na,

but if Av = V , then tv will equal to 1. Now let’s extract this values tv to a

sequence pub, along with value n.

After this we need to define our corru, for this we should define kv for

every v ∈ Fu. Let’s do this: tv = (y1/e
l

)tv mod n, so the corru with be the

sequence of this keys.

Let Statu(1
τ , G, pub, corru) = ku. As before we will use the Extended

Euclidean Algorithm to find such α, β that α ∗ pu + β ∗ tu
el−1

= 1. Let’s

explain why
tu
el−1

is integer: let’s denote u′ the (l − 1)-th node of the i-th

chain, then u has no access to u′ thus, pl−1i |tu, then el−1|tu.

Ok, so we can find such α, β, then let’s compute yα ∗ kβu mod n = xpu∗α ∗

x
tu

el−1 ∗β mod n = x.

It’s just left to consume that Adv
Kfix

RSA

B (1τ , G) = AdvStatu, and we got that

the last advantage is non-negligible, so Adv
Kfix

RSA

B (1τ , G) is non-negligible too.

We got a contradiction.



6.Conclusions

We have figured out what a hierarchical key assignment is and defined

different types of static adversary. Thanks to this, we were able to define the

Akl-Taylor scheme and considered several ways to build it. After defining the

scheme, it was necessary to check its security, which we successfully did. We

defined different types of attacks and checked the stability of the scheme in

its variations to various attacks. Thus, we demonstrated the security of the

scheme in our implementation. In the future, we can try to come up with

another implementation and examine its security. Also note that everything

we did took place in the context of the ring of integers, it will be interesting

to consider how basic definitions can be implemented on two rings and how

the results will differ.
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