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AHoTanil

Kaprumes €rop CepriitoBud. Cxema Aknaa-Teitsopa i anamgiz i1

Oe3IeKu.

Y it poboti Mu posristHemo cxemy Akia-Teiiiopa npusHadeHHst KIIOYiB,
3PO3YyMIEMO, SIK BOHA BJIAINITOBaHA 1 SIKi iCHYIOTH pi3HoBM M 11 peaJizarii. Cxemn
NpU3HAYEHHS KJIIOUIB MOJIETTYIOTh PO3MO/ILI KJIIOUIB KOPUCTYyBadaM, JTO3BOJIS-
104n 1M po3MI(POBYBATH Ta OTPUMYBATHU JOCTYII JIO TeBHOI iHpopMarii. Ak
[IpaBUJIO, KOPUCTYBadl OpraHizoBaHl B l€papxXiuHy CTPYKTYpPY BIJIIOBIJIHO 10
CBOIX IIOBHOBazKeHb, 110 JI03BOJIsl€ KOPUCTYBAU€eBl 3 BUIIUMU [TOBHOBAXKEHHSIMU
OTPUMYBATU KJIIOY1 BLJI YCIX H1JIJIEIVINX KOPUCTYBAUlB 3 HUKUYUMU [IOBHOBAaYKEH-
HgMmu. Mun 006roBopuMo ocHOBHI aTaki Ha CHCTEMHU, 0 BUKOPUCTOBYE 110 CXEMY
1 3aXUINEHICTh HAIIOI CMCTEMU CTOCOBHO IUX aTak.

Kmo4oBi cioBa: iepapxiune npusnadenns Kiroda, aaroput™ RSA, nesna-

qHa (DYHKITIS.



Annotation

Kartyshev Yehor. Akl-Taylor scheme and its security analysis.

In this paper we will consider the Akla-Taylor scheme for key assignment,
understand how it is structured and what types of its implementation exist.
Key assignment schemes facilitate the distribution of keys to users, allowing
them to decrypt and access specific information. Typically, users are orga-
nized into a hierarchical structure according to their authority, enabling a
user with higher authority to derive the keys of all subordinate users with
lower authority. We will discuss the main attacks on systems using this
scheme and the security of our system against these attacks.

Keywords: hierarchical key assignment, RSA algorithm, negligible func-

tion.
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1.Introduction

In various applications where users and resources can be organized into
partially ordered hierarchies, hierarchical key assignment schemes are ex-
tensively employed to establish secure access control policies. The natural
organization provided by hierarchies, reflecting users’ roles within an organi-
zation, makes them a fundamental component across diverse domains (e.g.,
database management systems, computer networks, operating systems, mili-
tary, government communications). Hierarchies play a crucial role in scenar-
ios modeled using Role Based Access Control (RBAC).

In 1983, Akl and Taylor introduced a novel perspective by proposing the
integration of cryptographic techniques to fortify access control mechanisms
within hierarchical structures [5] . Their innovative approach materialized in
a hierarchical key assignment scheme, where each class received a dedicated
encryption key. This key, coupled with specific public parameters, empowered
the calculation of keys assigned to all subordinate classes in the hierarchy.

The Akl-Taylor scheme, celebrated for its simplicity and versatility, has
seen widespread adoption in enforcing access control across diverse do-
mains. Its application extends to varied contexts, including mobile agent
environments and XML documents. Beyond its direct implementation, the
Akl-Taylor scheme has proven instrumental as a foundational template for
conceiving key assignment schemes tailored to enforce more expansive ac-
cess control policies. These encompass scenarios featuring transitive and
anti-symmetrical exceptions, as well as those grappling with time-dependent
constraints.

Furthermore, the impact of the Akl-Taylor scheme transcends specific ap-

5



6

plications, as evidenced by its incorporation into the design of broadcast
encryption protocols. Noteworthy contributions by Asano and Attrapadung
and Kobara underscore the scheme’s adaptability and utility within the dy-

namic landscape of cryptographic endeavors [6] .



2.0ur goals

Within the scope of this thesis, we conduct a thorough examination of the
Akl-Taylor scheme and its variations, focusing on both security and efficiency
aspects.

In terms of security, we delve into the Akl-Taylor scheme, aligning our
analysis with the definitions in. Special attention is given to the careful se-
lection of public parameters to ensure the scheme’s instances remain secure
against key recovery under the RSA assumption. Notably, we explore the im-
pact of hierarchy size on key derivation complexity in the Akl-Taylor scheme.
To address this, MacKinnon et al. propose an alternative generation of public
values, while Harn and Lin introduce a variant designed for more efficient key
derivation in broader and shallower hierarchies. Our investigation confirms
the security of both the MacKinnon et al. and Harn-Lin variants against
key recovery. Extending our analysis, we examine the security of the reduced
Akl-Taylor assignment, providing formal proofs for its application in schemes
covering diverse access control policies.

Moreover, we tackle the issue of designing an Akl-Taylor-based scheme
that ensures security concerning key indistinguishability. Proposing a gen-
eral construction, we introduce an independent solution that yields a key
assignment scheme offering security with respect to key indistinguishability,
leveraging any key assignment scheme guaranteeing security against key re-
covery.

Efficiency Considerations: Turning our attention to efficiency considera-
tions, we demonstrate the continued security of the Akl-Taylor scheme, even

when disclosing only a fraction of the public information — as minimal as

7
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a single prime number. However, this heightened security comes at the cost
of a more resource-intensive key derivation process. Thus, we bring to light
a tradeoff between the size of public information and the complexity of key
derivation.

Furthermore, we emphasize the superior performance of Akl-Taylor-based
schemes compared to other existing provably-secure schemes. Particu-
larly noteworthy is their efficiency in areas beyond key derivation complex-
ity. Akl-Taylor-based schemes with time constraints demand minimal pub-
lic information, showcasing heightened efficiency compared to other time-

dependent, provably-secure schemes.



3.Describing of the model

Contemplating a group of users organized into distinct classes, termed se-
curity classes, is fundamental in delineating the structure of an organization’s
access control system. Each security class serves as a representation for an
individual, a department, or a specific user group within the organizational
framework.

To establish the hierarchical structure among these classes, a binary rela-
tion denoted as =< is introduced. This relation serves to partially order the
set of classes V based on the inherent authority, position, or power associ-
ated with each class within the organizational context. The relationship =<
provides a systematic means of representing the relative influence or ranking
of different classes within the defined hierarchy.

The structure (V, <), referred to as a partially ordered hierarchy or poset,
delineates the hierarchical relationships among the classes. In this hierarchy;,
the notation v < w signifies that users in class u have access to the data of
class v. It’s evident that u can access its own data, leading to the assertion
that u < u for any u in V.

To formalize the access relationships we consider the following definitions

proposed in [4] :

Definition 1. Let A, be the set of nodes to which node u has access,

denoted as A, ={v eV :v 2 u}, forany u in V.

This set captures the nodes accessible from a given node uw within the

partially ordered hierarchy. Let’s

Definition 2. Let F;, ={veV:v¢ A,}

9
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The hierarchy (V,=) finds representation in the directed graph G* =
(V, E™), where each class corresponds to a vertex, and there exists an edge
from class u to class v if and only if v < u. Introducing another graph, G =
(V, E), as the minimal representation of G*, involves constructing a directed
acyclic graph. This minimal representation is derived from the transitive
and reflexive reduction of G*, preserving the transitive and reflexive closure.
In simpler terms, G shares the same transitive and reflexive closure as G¥,
meaning there is a path from u to v in G if and only if there is an edge
(u,v) in £*. This minimal representation ensures a concise depiction of the

relationships while eliminating redundancy.

Definition 3. Let’s define an algorithm Gen. It will generate information
and it is probabilistic polynomial time. Gen has as input: private information
1™ and graph G = (V, E). Output will consists of: s, - private information,
k, - private key Yu € V', pub - public information.

In other words we have:  Gen(17,G) = (s, k,pub) , where s, k are corre-

sponding sequences.

Definition 4. Let’s define an algorithm Der and it is deterministic
polynomial-time. Der has as input: private information 17 and graph G =
(V,E), classu € V,v € Ay, s, - private information that linked with class u,
pub - public information that generates by Gen. This algorithm will output
the key k, that linked with class v

In other words we have: Der(17, G, u,v, s,, pub) = k,

Definition 5. The system (Gen, Der) we will call a hierarchical key as-

signment

Let’s define a static adversary which is attacking the class v € V and let’s

assume that our static adversary is able to collect the information from any
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class v that has no access to class v. Let’s define an algorithm that will

collect this information:

Definition 6. Corrupt, is an algorithm with an input that consists of
private information s that is generated by Gen, the collection of s,, where

u € F,. Let’s denote the input of this algorithm by corr,
Later in this text we will use the definition of negligible function:

Definition 7. The function f : N — R is called negligible if V constant

c> 03 an integer n : f(x) <z for allz >n
Let’s define a static adversary attack Rec — St:

Definition 8. (Rec-St) Assume G = (V, E) - graph, (Gen, Der) - hierar-
chical key assignment scheme, let S tatfec - static adversary that attacks class
v. Let’s define such an experiment:

Experiment:

Expgf;tv (1", G)

(s, k,pub) < Gen(1",G)

corr, <— Corrupt,(s)

k¥ < Stat®™c(17, G, pub, corr,)
return k;,

Let’s define an advantage of Stat)* as Adv{, (17,G) = Pr(k} = k,).

Definition 9. We said the the scheme is secure in the sense of Rec — St

ifV graph G = (V,E) , v € V, the function Advgs, (17, G) is negligible for ¥

static adversary with polynomial time complexity in T - Stat?

Let’s define a static adversary attack Ind — St:

Definition 10. Assume G = (V, E) - graph, (Gen, Der) - hierarchical key

assignment scheme, let Stati”d - static adversary that attacks class v. Let’s
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define two experiments:

Experiment:
Ezpgya (17, G)
(s, k,pudb) < Gen(17,G)
corry, <— Corrupt,(s)
d « Stat!™ (17, G, pub, corry, k)
return d
Experiment:
Expge (17, G)
(s, k,pub) < Gen(1",G)
corry, < Corrupt,(s)
0 — (O, 1)l€ngth(kv)
d « Stat!"(17, G, pub, corr,, p)

return d

Similarly with Rec — St we should define an advantage of Statind and

define the security of the system in sense of Ind — St:

Definition 11. Advantage of Stat)" :Adviy, (17,G) =
| Pr{Bapli 1 (17,G) = 1} — Pr{Baplt0(17,G)) = 1}
We said the the scheme is secure in the sense of Ind — St if V graph G =
(V,E) ,v €V, the function Advé?gtv(f, (7) is negligible for V static adversary

with polynomial time complexity in T - Stat'™

Later in the text we will use generators that based on RSA. Let’s define

these generators:

Definition 12. K5 (17)

Choose randomly two distinct prime numbers p, ¢ with the size of T bits
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n<—px*xq

¢(n) < (p—1)(¢—1)
choose e from ZZ(n)

d <+ e ' mod ¢(n)
return ((n,e), (n,p,q,d))

Definition 13. KIJ;Z;A(IT,(B)
We repeat this:
Choose randomly two distinct prime numbers p, q with the size of T bits
until ged(p — 1,e) = ged(q—1,¢e) =1
n<—pxq
o(n) + (p—1)(g — 1)
choose e from Z,,
d + e ! mod ¢(n)
return ((n,e), (n,p, q,d))

Now we should formulate an experiment, let’s call the generator H, where
H is Klig,(17,¢) or Kjgy(17)
Definition 14. E:z:pg
((n.€), (n,p,q,d))  H
x < 7y,
y < x° mod n
1’ <+ B(n,e,y)
if ' = x:
return 1
else

return 0

With an advantage Advl = Pr{Exp% = 1}

Now let’s formulate two statements [2, 4]:
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Theorem 1. (Random Exponent RSA Assumption)
Advantage Adv?ﬁz((f)) is negligible, for V probabilistic method B with time

polynomial complexity in T

So the probability PT{Expgg;’; = 1} is a negligible regardless of which
algorithm B we will choose. We’ll need this fact later when we’ll talk about

the security of the scheme.

Theorem 2. (Fixed Exponent RSA Assumption)
fix
Assume we have a set of odd numbers O, Ve € O advantage AdngS“((lT)) is
negligible then for ¥V probabilistic method B with time polynomial complexity
nT
This fact is similar to the previous fact with the only difference that it is

formulated for the fixed encryption exponent e.



4. The Akl-Taylor scheme

Now we are able to define the Akl-Taylor scheme [5]. At first we should
define the hierarchical key assignment for this scheme. Let’s define algorithm
Gen(17,G):

(1) Let’s choose two different prime numbers: p,q, such that p # ¢ , p and ¢
have 7 bit size.

(2) Yv € V define t, such that t, divides t, < v € A,

(3) Define pub as sequence of the information that we defined in the previous
step.

(4) Let’s choose random ky - secret value, such that 1 < kg < n

(5) Let’s choose the private information s, and the encryption key k,: s, =
k, = kg mod n

(6) Define s and k as private information that we define in the previous step
(7) Output (s, k, pub)

Let’s define algorithm Der(17, G, u, v, s,, pub): From pub we have t,,t,

Let’s compute s'/% mod n = (k2)"/* mod n = k,

We defined the hierarchical key assignment, but we should decide how to
apply the (2) item from the list. There are two options:

Definition 15. (The Akl-Taylor assignment) Yv € V are choosing differ-
ent p, and define t,:

t,=1if A, =V and t, = H P, otherwise.
ugA,

Definition 16. (The MacKinnon assignment) Let’s divide graph G into
chains with total order and compare to each chain a prime number so all the

primes are different. For all v € V compare n, = p' where i is the order of v

15



16

in the relevant chain that assign to p. For V v € V define t,:

t,=11ifV = A, and t, = lcmyga,ny Otherwise

After we describe the second part of Gen we should describe how we will
choose our primes. There are two options:
Fixed prime choice:
Let’s define the set of [ distinct prime numbers that > 2 : P, = (p1, po, ..., D1
(1) In the Akl-Taylor assignment let’s sort V': {uy, ua, ..., ujy|}. Let’s compare
for Vu; € V' the prime number p; € Py,
(2) In the MacKinnon et al. assignment let’s consider the minimal dividing
of G to the total ordered chains. Assume that the amount of chains is m.
Let’s compare for Vp; € P,, class u;, where wu; is the first item in the i-th
chain
R-Random prime choice:
Assume n = RSA module, R = {R,}, - family of sets of integer. (1) In the
Akl-Taylor scheme we compare for V class from V' a prime number from R,,.
(2)In the MacKinnon et al. assignment we compare for V chain in the mini-

mal dividing of the graph G a prime number from R,



5.The security of Akl-Taylor scheme

Now we are able to deal with security of the Akl-Taylor scheme. First of
all let’s talk about the Akl-Taylor assignment of this scheme [2,4].

Theorem 3. Assume G = (V, E) - the partially ordered hierarchy, The
scheme of the Akl-Taylor assignment with the fixed prime choice is secure to

Rec — St.
Proof

Assume that there is a static adversary Stat,, that can find out k,, that
assign to the class u; with non-negligible advantage. Let’s construct a poly-
nomial time algorithm B(n, e, y), where e is choose from Py and e = p;, n is
generated by K }é?A(lT, (). Let’s describe how we will construct the algorithm
B(n,e,y):

Now we should construct the input for B(n, e, y): compare p; to class u;,

given what we knows that p; = e. Then, as we write before, t,, = 1,
uj

and if A,, =V then ¢,, = 1. The public information that we got from the
last step we combine to the sequence pub, augmented by the inclusion of the
value n. Let’s compute key k, = yt”/pi mod n for Vv € F,.. We can do
this, because u; ¢ A, so p;|t,. The sequence of k, that we computed yield a
sequence of corr,,.

Then after we define the input, let’s denote k,, = Stat, (17, G, pub, corr,,).
Let’s pick such integer numbers «, 8 that o * p; + 8 *t,, = 1. There are such
numbers, because gcd(p;,t,.) = 1, so we can find a, 3 by using Extended

Euclidean Algorithm. Now we can compute z just by computing y* * kf mod

17
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n. We will get z, because y /{:5 mod n = z®* % % mod n = ¥ Pt
mod n = .

Now it’s just left to consume that AdngSA(lT, e) = AdUStatui(lr) and as
we said before AdngS A is negligible, so Advsmt%QT) is negligible, but we

assumed that Advgtatuz_(lT) is non-negligible. We got a contradiction.

So we have proved that the Akl-Taylor assignment with the fixed prime
choice is secure to Rec — St. Now let’s prove that the scheme with the same
hierarchical key assignment with the random prime choice is secure in the

sense of Rec — St.

Theorem 4. The scheme with the Akl-Taylor assignment with the random

prime choice is secure to Rec — St.
Proof

For this theorem we will need two lemmas. Let’s formulate the first of

them:

Lemma 1. Let p,q are two distinct prime numbers with the bit size T,

n = p* q. So the FEuler function satisfies the following inequality:
gb(n) > 227’—2 _ 97

Proof

Our prime numbers p, ¢ have bit length 7, so p,q > 27! thus,

p(n) = (p—1)x(¢g—1) > (271 —=1)%2"!, because p, ¢ are distinct. Thus,
d(n) > 2¥ 2 9Tl = Q¥2 o

For the next lemma we will need some knowledge from number theory.

First of all let’s recall the Prime Number Theorem:

Theorem 5. Let 7(x) - number of prime numbers that < x. Then w(z) ~

x/In(z) and Vo > 17 : w(z) > =/ In(z).
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Next fact:
Theorem 6. Let w(x) be the number of different prime factors of z. Then

the function w(x) has normal order log(log ). Besides, the function w(¢(n))

has normal order (log(logn))?/2 and the following inequality holds:
(1 —€) * (log(logn))?/2 < w(d(n)) < (1+ €) * (log(logn))?/2.

Now we are able to formulate the lemma:

Lemma 2. Let A, = {a < w : a is prime}, B, = {a < w : a is prime and
ged(a, ¢(n)) = 1}. Let w = 2°""% — 27 and n’s bitlength < 27. Then |A,, —

By|/|Aw| - negligible function in .
Proof

First of all let’s note that |A,| = 7(w) and |A,| — |Bw| < w(é(n)):

(log(logn))? § Inw
[Awl 7 w(w)

< (1
(14 ¢) * 5 ”

Notice that log(logn) < log(27) , because n < 27, then log(n) < 27, then

1
loglog(n) < log(27). Notice that w > 2?73 and % < 7. Then,

(log(27'))2 * T
227—3

|Ay| — | Bul/|Aw| < (14 ¢€) % - negligible.

Now we are able to prove the theorem: As in the previous proof of the
security we will assume that there is a static adversary B which is able to
compute with non-negligible advantage the key k,. We will construct an
algorithm B(n,e,y), where n, e are chosen from the generator Kpg,(17):

We got e from Kjg),(17) and if e is not prime and not satisfy an inequality
3 < e < w - stop and try to choose e again. So if e is prime let’s set our p, =

e and choose a distinct p, for every v € V,v # u that is prime that # e, €

[3,w]. Then we compute t, = H Pa, but if t, = 1 if A, = V. Unite these
a¢ A,
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numbers into the sequence pub, along with n. Now Vv € F, let’s compute
the key k, = yt”/ Pv mod n, unite these keys into the sequence corr,. Denote
k, = Stat, (17, G, pub, corr,,).

Again we need to use the Extended Euclidean Algorithm to compute «, 8
such that p, * o + t, * 5 = 1, because as in the previous proof: gcd(py,t,) =

# mod n = z.

1. It’s just left to compute: y * kg mod n = aP** x gh*
Now we got that Advg,(17) is non-negligible. Let’s denote Advgiy (17)
be the advantage with restriction that gcd(py, ¢(n)) = 1. If Advsee (17) is
negligible, then Stat, is breaking our scheme if only ged(py, ¢(n)) # 1, but
accordingly the Lemma 2, the probability that gcd(py, ¢(n)) # 1 is negligible,
then Advg,, - negligible, then we got a contradiction. So, we got that
Advgsar (17) is non-negligible.
Let’s note that:
Advg%h(lﬂ = Probability(e is prime and gcd(e, p(n)) = 1)* Advgar (17) =

_ @) —w(@m) o ny s me w0
=T ety s (1) 2 BT Adusa (1) 2
w— Inw *w(p(n)) e Adve (17 2772 — 27 — 21 x w(¢(n)) .
Inw * ¢(p(n)) Advsiar, (17) - 2 27 % 227

Advgiep (17) >

22772 — 2T — 7% (1 + ¢) * (loglog n)?
- 27 x 227

* Ad?}stat&(lT) Z

227—2 _ 9T _ 0(7_3) 1
(17) >
- 27 % 227 * Advsiar, (17) 2 CxT

% Advstmg; (1T)

This function is non-negligible thus, Advg%n“(f) is non-negligible. We got a

contradiction.

Theorem 7. Let G = (V, E) - partially ordered hierarchy, let m be a
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number of total ordered chains in the minimal dividing of G.The scheme
with the MacKinnon et al.assignment with prime choice in P,, is secure to

Rec = St.
Proof

Let e = p;. As usual let’s assume that there is a static adversary Stat, that
is able to compute with non-negligible advantage the key k, that is compared
with the class u, where u is the [-th node in the ¢-th chain. As before we

will construct an algorithm B(n, e, y) where n is choosing accordingly to the

*
n

generator K};@EA and with B(n,e,y) we will compute x € Z;, such that y =
x° mod n. Let’s construct this algorithm B:

At first we will define an output: V integer j € [1,m] we will compare p;
to class u; with respect to p; = e. Then Vv € V we will compute n, = pg,
where v - [th node in the j-th chain. Now we can compute t, = lcmg 4, na,
but if A, =V, then t, will equal to 1. Now let’s extract this values t, to a
sequence pub, along with value n.

After this we need to define our corr,, for this we should define k, for
every v € F,. Let’s do this: t, = (yl/el)t” mod n, so the corr, with be the
sequence of this keys.

Let Stat,(17, G, pub, corr,) = k,. As before we will use the Extended

tu
Euclidean Algorithm to find such «, 5 that a*p, + §x = = 1. Let’s
e

explain why % is integer: let’s denote u’' the (I — 1)-th node of the i-th
chain, then u has no access to u’ thus, pi~!|t,, then e '|t,.

Ok, so we can find such «, 3, then let’s compute y“ * k{f mod n = zP** x
27 mod n = w.
It’s just left to consume that Advg’é?“‘(f, G) = Advgia,, and we got that

fiz
the last advantage is non-negligible, so Advg’%s"‘(lr, (7) is non-negligible too.

We got a contradiction.



6.Conclusions

We have figured out what a hierarchical key assignment is and defined
different types of static adversary. Thanks to this, we were able to define the
Akl-Taylor scheme and considered several ways to build it. After defining the
scheme, it was necessary to check its security, which we successfully did. We
defined different types of attacks and checked the stability of the scheme in
its variations to various attacks. Thus, we demonstrated the security of the
scheme in our implementation. In the future, we can try to come up with
another implementation and examine its security. Also note that everything
we did took place in the context of the ring of integers, it will be interesting
to consider how basic definitions can be implemented on two rings and how

the results will differ.
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